Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 17(3): 126-131, May 2014. tab
Article in English | LILACS | ID: lil-719102

ABSTRACT

Background Enteric red mouth disease and Saprolegniasis, which are caused by the bacteria Yersinia ruckeri and the oomycete Saprolegnia parasitica, respectively, are important illnesses that affect salmonid farming. Sanitary problems in farms are addressed by the prevention of disease outbreaks or by the treatment of diseases with chemicals. Environmental and governmental restrictions, toxicity and high treatment costs limit the use of drugs. Marine organisms, such as algae, sponges and corals, have developed an antimicrobial defense strategy based on the production of bioactive metabolites. Among these organisms, seaweeds offer a particularly rich source of potential new drugs. Hence, many pharmacologically active substances have been isolated from seaweeds. In the Ceramium genus, Ceramium rubrum has been emphasized by several authors for its antimicrobial properties. Based on this background, the present study focused on the antimicrobial activity of a lipophilic extract of C. rubrum on Y. ruckeri and S. parasitica. Results The alga, collected from the Pacific coast of Chile, underwent an ethanol extraction, and the concentrated extract was partitioned between water and dichloromethane. From the dichloromethane extract, fatty acids, fatty acid esters, one hydrocarbon and phytol were identified by Gas Chromatography-Mass Spectrometry (GC/MS) analysis. The antimicrobial study showed that the whole extract was more active than the individual components, which suggests a strong synergistic effect among the components. Conclusions These results may constitute a basis for promising future applied research that could investigate the use of C. rubrum seaweed as a source of antimicrobial compounds against fish pathogens.


Subject(s)
Animals , Plant Extracts/pharmacology , Saprolegnia/drug effects , Yersinia ruckeri/drug effects , Rhodophyta/chemistry , Fish Diseases , Methylene Chloride/pharmacology , Anti-Infective Agents/pharmacology , Salmonidae , Seaweed , Colony Count, Microbial , Gas Chromatography-Mass Spectrometry
2.
Electron. j. biotechnol ; 16(5): 4-4, Sept. 2013. ilus, tab
Article in English | LILACS | ID: lil-690467

ABSTRACT

Background: The horn fly, Haematobia irritans, is an obligate bloodsucking ectoparasite of pastured cattle and is a major pest of livestock production in North and South America and Europe. In this study, we investigated the potential to use cattle pastures, infected with non-toxic, "friendly" fungal-endophyte-infected (E+) tall fescue, Festuca arundinacea Schreb., as a strategy for reducing horn fly loads in cattle, and to evaluate the possible bioinsecticide effect on horn fly larvae. Results: When cattle grazed in E+ tall fescue, a decrease in fly-load was observed, compared with other pastures (endophyte-free (E-) pastures). The infestation of horn fly load decreased according to an increase in the percentage of endophyte present in the different pastures (0 to 100%). Moreover, two groups of animals with significant differences in the fly-load (high and low fly-load) in the same herd were observed (P < 0.05). Additionally, it was possible to determine a bioinsecticide effect of cattle dung, upon horn fly larvae (80%), from animals fed E+ tall fescue. Conclusions: These results constitute the first report on the potential for exploiting pasture management for controlling 1) horn fly-loads on cattle and 2) the normal development of horn fly larvae. In conclusion, this information provides preliminary understanding of the role of cattle pasture diet management for controlling horn fliesas part of an integrated pest management strategy for this major pest of farmed livestock.


Subject(s)
Animals , Cattle , Muscidae , Pest Control, Biological , Endophytes/physiology , Fungi/physiology , Insecticides , Festuca , Livestock , Larva
SELECTION OF CITATIONS
SEARCH DETAIL